43 research outputs found

    With No Deliberate Speed: The Segregation of Roma Children in Europe

    Get PDF
    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices

    Synthesis of nanocomposite films based on conjugated oligomer-2D layered MoS2 as potential candidate for optoelectronic devices

    Get PDF
    In this investigation, we have analyzed the structural, electrical, and optical behaviors of pure and composite thin films which are obtained from 2D monolayer molybdenum disulfide (MoS2) flakes, conjugated oligomer (CO) 1,4-Bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene (BECV-DHF), and by combining CO (BECV-DHF) with MoS2 in forms of CO/MoS2 composites. All the samples are coated on SiO2/Si substrates using the spin coating procedure where a spin-coating solution has been obtained by dispersing CO and MoS2 in ethanol or toluene. The structural morphology of MoS2 films and CO/MoS2 films of various thicknesses are analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and profilometer. These experimental results confirm the formation of MoS2 layer composite with oligomer nanocrystals. The optical properties of MoS2, CO, and CO/MoS2 films showed that the increased film thickness shifted the spectral peaks towards near infrared (NIR) and ultraviolet?visible (UV) regions of the electromagnetic spectrum. Moreover, devices such as solar cells, flexible memory cell and MOSFET were designed. The I-V characteristics of these devices show that CO/MoS2 composite films could serve as potential candidates for organic-inorganic nano-electronic device applications. ? 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Green synthesis of silver nanoparticles using Pimpinella anisum seeds: Antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells

    Get PDF
    Background: The present study focused on a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) with multipurpose anticancer and antimicrobial activities. Materials and methods: We studied a green synthesis route to produce AgNPs by using an aqueous extract of Pimpinella anisum seeds (3 mM). Their antimicrobial activity and cytotoxicity on human neonatal skin stromal cells (hSSCs) and colon cancer cells (HT115) were assessed. Results: A biophysical characterization of the synthesized AgNPs was realized: the morphology of AgNPs was determined by transmission electron microscopy, energy dispersive spectroscopy, X-ray powder diffraction, and ultraviolet-vis absorption spectroscopy. Transmission electron microscopy showed spherical shapes of AgNPs of P. anisum seed extracts with a 3.2 nm minimum diameter and average diameter ranging from 3.2 to 16 nm. X-ray powder diffraction highlighted the crystalline nature of the nanoparticles, ultraviolet-vis absorption spectroscopy was used to monitor their synthesis, and Fourier transform infrared spectroscopy showed the main reducing groups from the seed extract. Energy dispersive spectroscopy was used to confirm the presence of elemental silver. We evaluated the antimicrobial potential of green-synthesized AgNPs against five infectious bacteria: Staphylococcus pyogenes (29213), Acinetobacter baumannii (4436), Klebsiella pneumoniae (G455), Salmonella typhi, and Pseudomonas aeruginosa. In addition, we focused on the toxicological effects of AgNPs against hSSC cells and HT115 cells by using in vitro proliferation tests and cell viability assays. Among the different tested concentrations of nanoparticles, doses 10 µg led to increased cytotoxicity. Conclusion: Overall, our results highlighted the capacity of P. anisum-synthesized AgNPs as novel and cheap bioreducing agents for eco-friendly nanosynthetical routes. The data confirm the multipurpose potential of plant-borne reducing and stabilizing agents in nanotechnology

    Fabrication of nano-mosquitocides using chitosan from crab shells: impact on non-target organisms in the aquatic environment

    Get PDF
    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV–vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8–10 ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments

    Prospects of Nanotechnology in Clinical Immunodiagnostics

    Get PDF
    Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials possess extraordinary physical, mechanical, electrical, thermal and multifunctional properties. Such unique properties advocate their use as biomimetic membranes to immobilize and modify biomolecules on the surface of nanoparticles. Alignment, uniform dispersion, selective growth and diameter control are general parameters which play critical roles in the successful integration of nanostructures for the fabrication of bioelectronic sensing devices. In this review, we focus on different types and aspects of nanomaterials, including their synthesis, properties, conjugation with biomolecules and their application in the construction of immunosensing devices. Some key results from each cited article are summarized by relating the concept and mechanism behind each sensor, experimental conditions and the behavior of the sensor under different conditions, etc. The variety of nanomaterial-based bioelectronic devices exhibiting novel functions proves the unique properties of nanomaterials in such sensing devices, which will surely continue to expand in the future. Such nanomaterial based devices are expected to have a major impact in clinical immunodiagnostics, environmental monitoring, security surveillance and for ensuring food safety

    Identification, evaluation the source of natural bioactive compounds from Calotropis gigantea l. flowers and their anticancer potential

    No full text
    Background: In the intensified search to derive biologically active compounds from natural products for various health care issues, attention is focused on non-edible plant sources. Among the wild plants, Calotropis [milk weeds] of the family Apocynaceae, are the repository of pharmaceutically active phytoconstituents. The flowers of C. gigantea are expected to be rich in bioactive compounds. Methods: The bioactive compounds and in vitro anticancer activity of C. gigantea flower extract were investigated. The compounds in the extract were separated using GC–MS and confirmed their structures with NIST (National Institute of Standard and Technology) database. The cytotoxicity of flower extracts against A-549 lung cancer cell lines was evaluated by MTT assay. Among the six identified compounds, three biologically active compounds with short retention time and abundance were chosen for molecular docking for anticancer activities. Molecular docking using the software GLIDE version 6.5 was used to trace their interactions with the anti-lung cancer protein, IT69. Results: The phytochemical screening indicated the rich presence of anticancer flavonoid and phenolic compounds in the flower extract. Inhibition of cell viability and growth and morphological alterations in cells were observed when A-549 cells were exposed to different concentrations of flower extract. The highest percentage of cell death (70 %) was observed in cells exposed to 100 µg/ml concentration. Molecular docking of three identified compounds with lung anticancer protein complex, IT69 proved that Butanoic acid, 3-[(phenyl methoxy) imino] trimethylsilyl ester is a good anti-lung cancer agent. Hence for pulmonary cancer, the identified compound can intensively be tested further

    Giant Self-Kerr Nonlinearity in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems Under Low-Intensity Light Irradiance

    No full text
    Hybrid nanocomposites can provide a promising platform for integrated optics. Optical nonlinearity can significantly widen the range of applications of such structures. In the present paper, a theoretical investigation is carried out by solving the density matrix equations derived for a metal nanoparticles-graphene nanodisks-quantum dots hybrid system interacting with weak probe and strong control fields, in the steady state. We derive analytical expressions for linear and third-order nonlinear susceptibilities of the probe field. A giant self-Kerr nonlinear index of refraction is obtained in the optical region with relatively low light intensity. The optical absorption spectrum of the system demonstrates electromagnetically induced transparency and amplification without population inversion in the linear optical response arising from the negative real part of the polarizabilities for the plasmonic components at the energy of the localized surface plasmon resonance of the graphene nanodisks induced by the probe field. We find that the self-Kerr nonlinear optical properties of the system can be controlled by the geometrical features of the system, the size of metal nanoparticles and the strength of the control field. The controllable self-Kerr nonlinearities of hybrid nanocomposites can be employed in many interesting applications of modern integrated optics devices allowing for high nonlinearity with relatively low light intensity

    A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser

    No full text
    Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are strongly localized in the nanoscale. We propose a novel nanospaser composed of a metal nanoparticles-graphene nanodisks hybrid plasmonic system as its resonator and a quantum dots cascade stack as its gain medium. We derive the plasmonic fields induced by pulsed excitation through the use of the effective medium theory. Based on the density matrix approach and by solving the Lindblad quantum master equation, we analyze the ultrafast dynamics of the spaser associated with coherent amplified plasmonic fields. The intensity of the plasmonic field is significantly affected by the width of the metallic contact and the time duration of the laser pulse used to launch the surface plasmons. The proposed nanospaser shows an extremely low spasing threshold and operates in the mid-infrared region that has received much attention due to its wide biomedical, chemical and telecommunication applications

    Quantitative analysis of the Schottky interface of reduced graphene oxide Schottky diodes

    No full text
    A Schottky contact is greatly vital for electronic devices; therefore, a quantitative analysis of the Schottky interface is important in realizing a high-performance Schottky diode. In this study, we fabricate an r-GO-based Schottky diode and elucidate the charge traps in r-GO by analyzing the current–voltage characteristics. The conduction becomes space charge limited (at high voltage) because of these traps. The trap energy and concentration were calculated as ∼0.20 ± 0.02 eV and 2.11 × 10 ^15 cm ^−3 , respectively. Quantitative information about charge traps will help in the fabrication of high-quality r-GO-based electronic devices. The trap density is the core challenge for the material community; therefore, controlling the traps is essential in improving the performance of r-GO-based electronic devices. We believe that the quantitative analysis of the Schottky interface could be beneficial for the improvement of the charge transport in r-GO-based electronic devices

    Gamma-Irradiation Effects on the Spectral and Amplified Spontaneous Emission (ASE) Properties of Conjugated Polymers in Solution

    No full text
    In this paper, we investigate the effects of gamma (γ) radiation on the spectral and mplified spontaneous emission (ASE) properties of two conjugated polymers (CPs) viz., poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH–PPV) (CPM) and poly{[2-[2′,5′-bis(2″-ethylhexyloxy)phenyl]-1,4-phenylenevinylene]-co-[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene]} (BEHP-co-MEH–PPV) (BMP) in tetrahydrofuran (THF). Gamma irradiation strongly affected the photophysical properties of these CPs. To explore these changes, gamma radiation, in the range of 2–50 kGy, was used to maintain the temperature at 5 °C constant for all doses at a dose rate of 12.67 kGy/h, using a 60Co gamma ray. The ASE profiles of the CPs in THF were obtained under the high power excitation of a Nd:YAG laser (355 nm), pre- and post-radiation. The result revealed a dramatic blue shift of the fluorescence and the ASE spectra after gamma irradiation. This shift in the luminescence and ASE spectra could be a response to the conformational disorders such as gamma irradiation-induced polymer crosslinking, which was verified using Raman spectra, FTIR, and swelling experiments. This could be the first report on the effect of gamma radiation on the ASE properties of conjugated polymers
    corecore